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Abstract. Schwinger’s finite p) dimensional periodic Hilbert space representations are studied

on the toroidal latticeZ, x Zp with specific emphasis on the deformed oscillator subalgebras
and the generalized representations of the Wigner function. These subalgebras are shown to be
admissible endowed with the non-negative norm of Hilbert space vectors. Hence, they provide
the desired canonical basis for the algebraic formulation of the quantum phase problem. Certain
equivalence classes in the space of labels are identified within each subalgebra, and connections
with area-preserving canonical transformations are examined.

The generalized representations of the Wigner function are examined in the finite-
dimensional cyclic Schwinger basis. These representations are shown to conform to all
fundamental conditions of the generalized phase space Wigner distribution.

As a specific application of the Schwinger basis, the number-phase unitary operator pair in
Zp x Zp is studied and, based on the admissibility of the underlyirggcillator subalgebra, an
algebraicapproach to the unitary quantum phase operator is established. This being the focus of
this work, connections with the Susskind—Glogower—Carruthers—Nieto phase operator formalism
as well as standard action-angle Wigner function formalisms are examined in the infinite-period
limit. The concept of continuously shifted Fock basis is introduced to facilitate the Fock space
representations of the Wigner function.

1. Introduction

Recently, finite-dimensional quantum group symmetries find increasing physical applications
in condensed matter systems. The Landau problem is known to hawgtlsgmmetry [1]

in the algebra satisfied by magnetic translation operators [2].s/Af2) realization of the

same problem has also been recently studied [3]. The finite-dimensional representations of
these algebras are parametrized by a discrete set of labels on a two-dimensional toroidal
lattice Zp x Zp. The action of the group elements on the Hilbert space vectors is cyclic,
the periodicity of which is determined by the dimension of the corresponding algebra.
In the Landau problem the periodicity is directly connected to the degeneracy of the
Landau levels in the ground state [3]. In a more general framework, similar algebraic
structures were examined long ago by Schwinger in the unitary cyclic representations of
the Weyl-Heisenberg (WH) algebra [4]. Recently Floratos [5] examined the WH algebra
parametrized by labelling the vectors on the toroidal lattice in term®%df 1 unitary
traceless generators as a convenient representation bf). More generally, the elements

of the discrete and finite-dimensional WH algebra are generators of the area-preserving
diffeomorphisms onZ, x Zp which are known to respect the Fairlie—Fletcher—Zachos
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sine algebra [6]. The infinite-dimensional extension of this is the group of infinitesimal
area-preserving diffeomorphisms which has been examined by Arnold in the theory of
phase space formulation of classical Hamiltonian flow [7]. With the connection to area-
preserving diffeomorphisms, the finite-dimensional WH algebra defines, in the quantum
domain, namely, the set of linear canonical transformations on the discrete canonical phase
space pair, the generalized coordinate and the momentum. This has been observed as an
emergingpresymplecticstructure preserving the discrete phase space area of which the
connection to the classical symplectic structure is established in the continuous limit as the
dimension of the algebra is extended to infinity [8].

A more general frame for unitary cyclic representations of finite-dimensional algebras,
of which a special case is the WH algebra, is Schwinger’s finite, special-unitary-canonical
basis [4]. Schwinger’s approach proves to be a generalized realization for the group of
discrete area-preserving transformations on the 2-torus. This basis has been used indirectly
in various applications to physics, particularly to condensed matter [9—-11] and field theory
related problems [12] such as the discretized versions of the Chern—Simons theory [9, 10],
the dynamics of Bloch electrons in two dimensions interacting with a constant uniform
magnetic field [10], the quantum Hall effect [11] etc. Most of these applications refer to
the discrete WH algebra although the results can be equally valid using the more general
Schwinger basis which will be discussed first in section 2.

In this work we will follow a different route than the standard applications above and
demonstrate that the Schwinger basis also provides an algebraic approach to the canonical
phase space formulation of the well known quantum phase problem. As the first step
in this route, the subalgebraic realizations of Schwinger’s unitary operator basis will be
constructed in sections 3.1 and 3.2 with a particular emphasis on the realizations in terms
of the g-oscillator. It will be shown that in finite dimensions, these deformed oscillator
realizations naturally lead to an admissible (i.e. non-negative) cyclic spectrum by the natural
emergence of a positive Casimir operator. The net effect of the positive Casimir operator
is to shift the spectrum to the admissible ranges, namely, a strong condition on the non-
negative norm of the vectors in the Hilbert space. The crucial role played by the admissible
cyclic representations in the canonical formulation of the quantum phase problem will be
examined. In order to complete the picture, we also briefly discuss the well kinpiai(2))
subalgebraic realizations of the Schwinger operator basis.

The equivalence classes and their connection to canonical transformations on the discrete
lattice will be discussed in section 3.3. Section 4 is devoted to the application of the
Schwinger basis in the Wigner—Kirkwood construction of the Wigner function. It will be
shown that this generalized construction complies with all fundamental properties of the
Wigner function. In section 5 we explore the applications of Schwinger’'s formalism in
the unitary finite-dimensional number-phase operator basis. In this context, we elaborate
more on theg-oscillator subalgebraic realizations of section 3.2. In sections 4.1-4.3 we
examine the infinite-dimensional limit of the number-phase basis;-tbeillator subalgebra
and the Wigner function respectively. There, it will be shown that as the dimension of
the unitary number-phase operator algebra is extended to infinity, the conventional phase
operator formalism of Sussking—Glogower—Carruthers—Nieto is recovered. We consider this
as the first step to establish the desired unification of the quantum phase problem with
the canonical action-angle quantum phase space formalism. The admigsib@llator
subalgebra is also investigated in the— oo limit and shown to have a linear equidistant
spectrum accompanied by a typical spectral singularit® at co. This singular behaviour
is examined using Fujikawa'’s index theorem.

The representations of the Wigner function in the phase and number eigenbases are
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investigated in the finite and infinite Hilbert space dimensions. Within this unification
scheme the concept of a continuously shifted finite-dimensional Fock basis is introduced in
section 4.4. It is demonstrated that this concept facilitates the formulation of the Wigner
function in the Fock eigenbasis. In the following, we start our discussion with a short study
of Schwinger’s cyclic unitary operator basis.

2. Finite-dimensional Schwinger operator basis

In this formulation [4, 8, 13], one considers a unitary cyclic operalfbracting on
a finite- d|men3|0nal Hilbert spacé(D spanned by a set of orthonormal basis vectors

Ulu)y = |u)ps1 [)k+p = Uk rlulu)y = S i 1)

In the {|u)} basis,L? is represented by
. D-1
U= o) ke k (u]. (2
k=0

The action of/ corresponds to eotation in Hp. The axis of rotation is along the direction
i[l ‘Hp given by the vectofv), of which the direction remains invariant under the action of
U as

Uy, = €7 v), Z v ) 0<¢<D-1 (3)

Wherev,ﬁz’ = e " andyy = 27/D. On the other hand it was shown by Schwinger that
the new sef{|v); },—0...(p—1) also forms an orthonormal set of vectors i&:|v)y = 8¢,

for which one can define a second unitary opera}cs'uch thaty’? = I and
Vivhe=)es1 [0)esn =)
Viu) = e fu)y

wherek € Z and 0< k < (D —1). The basis vector§u), }k—o,....p—1) and{|v)¢}e=o.... 01
define two equivalent andonjugaterepresentations in the sense that the representation in
the {|u) i }x—o,...(p—1) basis in equation (3) is complemented by

Z T (5)

(4)

The corresponding operatoMsandV satisfy
Z;[ml]’)mz — ei)/omlmzfjmzz;[ml
Z)mﬁ-D — Z/A[ml and ]}m2+D — f)mZ.

An operatory, of which the projection in théu), representation is (uy), is given in the
|v), representation a¥ (v,). These two conjugate representations are then connected by

(6)

D-1
W) = 715 ; Wulv)e P where (ulv), = e "%, @)

In analogy with the elements of the discrete Wigner—Kirkwood basis [14, 15], we now
define the operator [4, 13]

S = —ivomamz/2pymiyyme . dyomima/2yymayymi (8)
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wherem = (m1, m2). We now represent the transformation in equations (3) and (5) between
{lv)eYoce<p—1 and{|u)i}o<k<(p—1) bases using the unitary Fourier operafordefined as
[16], {[v)x} = Fllu)}, and{ju)e} = F{[v)i}, whereFT = F-1. Then,

)k 1) 1) =T o) T

9

]_‘—l ]: }-71 ‘7_-,1 ( )
lu)k—> V) k= [u) -k —> [V} —> |u ).

The equations (9) produce a Fourier automorphism at the operator level as
aiﬁia—liﬁ—lisz
A ]:-—1 A ]}—1 A A ]: 1 A (10)
VESSYE Ry SR vty

Next, we define a transformatioR,,» in the space of the lattice vecton such that
Ryj2 : (my, mp) — (—my, my). It is possible to show that

FSmF = 8g,m Fr=1 and R:,= (11)

Equations (11) imply that equation (8) is invariant under simultaneous operatichsinél
R },. Sm has the properties

A ~

St =8,
Tr{Sm} = Dém.o

Q mxm’/2 &
S Sy = @romxm’/2g

P A o 12)
(S Sm) S = Sy (Syny Synr) (associativity)
Sy =1 (unit element)
§m§_m =1 (inverse)

wherem x m’ = (mym’, — mom?). Using equations (8) and (12) it is possible to see that
Sm)? = Spm = S_pm = (=DP""1 (13)

where Sp,, commutes with all elements,,, for all m and m’. With the associativity
condition in equations (12) satisfied, the unitary Schwinger operator Basidefines a
discrete projective representation of the Heisenberg algebra parametrized Oigdrede
phase spacerectorm jn Zp X Zp. Excludingm = 0 and if D is a prime number, the
elements of the basi&™V™"2 form a complete set oD? — 1 unitary traceless matrices
providing an irreducible representation fex(D). If D is not a prime, then the prime
decomposition ofD asD = D1D,...D; ..., as shown in [4, 13], permits the study of a
physical system with a number of quantum degrees of freedom with each degree of freedom
expressed in terms of an independent Schwinger basis with the cyclic property determined
by the particular prime factoD;. In what follows, we will assume thab is a prime
number representing a single degree of freedom. Exceptional cases will be independently
mentioned as needed.

The eigenspace d,, is spanned by the eigenvectdra, r)o<r<(p—1) With eigenvalues
A-(m). Using equations (1) and (4) we expand the eigenvectorsr) where 0 <
r < (D —1) in, for instance, thelu), basis with coefficientse’(m) = (ulm,r).
From this definition and equation (1) it is clear that the coefficients are periodic, i.e.

e’ (m) = ¢/, (m). The coefficients and eigenvalues are then determined by the recursion

Ar(m)el” (m) = e mm2 e (m) where Bi(m1, mz) = yoma(2%k —m1)/2 (14)
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which yields
. s 2y M71 .
d(m) =™mme s o (m) = { [ ] 2 (mye i tmma) }e&(m) (15)
n=0

where M = [(modD) + 1]/m; and M € Z. In deriving equation (15) from (14) we

used the periodicity property!’(m) = e, (m). It should be noted that the diagonal

representationgm, r) of S in the |u); and |v); bases are equivalent and consistent with
equations (9) and (10) only for the case in whibhis a prime number. We will come
back to equation (15) when we examine thescillator subalgebraic realizations of the
Schwinger basis in section 3.2. We now turn to the subalgebraic structure of the Schwinger
basis.

3. The deformed subalgebraic structure

It is well known that theﬁln basis has an explicit deformed algebraic structure. Defining
the operatord,,, = D/2x S,,, the commutator

~ A L2 . N
[Din, D] =1— sm(@m X n) Dpin (16)
Yo 2
describes the Fairlie—Fletcher—Zachos sine algebra [6]. The generators of the algebra
can be represented by the Weyl matrices [17]

10 0 ... © 010 0
0w 0 ... O 0 01 0
gzc')gafz ... 0 h=1: 1t : 0 (17)
o 0 00 1
00 0 ... o1 100 0

with J,, = @™m2/2gmpm2 satisfyinghg = wgh, g = h? =1, with »? = 1 andw = €.
With these at hand, it is possible to verify that,], J.] = i2/y0SinN(yo/2m x 1) Jmin.

The deformed, (s/(2)) subalgebraic realizations of the sine algebra have been under
extensive investigation recently, based on the magnetic translation operator basis [9-12].
In the following we will present a brief account of this symmetry in the more general
Schwinger basis.

3.1. Theu,(sl(2)) subalgebraic realization

We define the operatotd and At as

A=dSp, +d Sm At=d*S_ 4+ d"S_pm (18)
whered andd’ satisfy

dd/* —d*d = _(p1/2 _ p—1/2)—2 p= e—iyomxm’. (19)
We find that

AASm—m’ = psjm—m/AA AAS:n—m/ = _lgjn—m’A (20)

Sy = 5, p” where AJ; = (Js+ 1A

ands, = e"mmxm’ — pD/2 gych that equation (13) holds. It is also possible to realize in
equations (20) tha$,,S_,, = §,p’* such thats, = e 7rP-Dmxm’ _ ,(D-1)/2,
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For both cases, a direct calculation yields

o Js+Dj2 _ —Js—Dj2 . D
T p p _
[A.All= - puz_p-lz T |:J3 + Ej| (21)
which, together with equations (20), impliesa/2(s/(2)) symmetry defined by the elements
A, At, J5. The Casimir operator for this subalgebra is given by

~~ 1/~ D 1\ .. 1/. D 1\7?
)ZATA = ~ = ZAAT a >y Py 22
C, +|:2 (J3+ > 2)] +|:2 <J3+ > +2):| ( )

where ] is formally given in equation (21). The Hilbert space is spanned by the vectors

lj, J3) Wheref3|j, J3) = Jalj, ja) with —j < jz < j. If the lowest weight representations

exist such thatd|j, —j) = 0, then is determined by the value of the Casimir operator as
Colj, —j) = [3(D/2— 3% — )I?Ij, —j). The lowest weight representations are obtained by
successive operations dff on the statd j, —j). These representations abedimensional

for the particular cas¢ = (D — 1)/2 such thatAf|j, —j + (D — 1)) = Al|j, j) = 0, where

the highest and lowest weight representations coincide. In this case the representations are
cyclic with period D. For this case, the Casimir operator vanishes. We close this section
by referring to the extensive applications of thgs/(2)) symmetry, for instance in [9-12]

and move on to another subalgebraic realization of the Schwinger basis.

3.2. The spectrum shifted admissigl®scillator realization

Let us now consider thd and A' operators in equation (18) whetktandd’ are constant
to be redetermined for thg-oscillator realization. Using equations (12) we construct the
g-commutator

AAT — gATA = AP+ 1d'PH (A - q)
+dd” (&M _ )8 S 4 d'dF (€7 — )8 S (23)

wherem x m’ # (modD). Here, |g] = 1 and is otherwise arbitrary at this level.
Equation (23) can be written as

AAT —gATA = (dP+1dPHA-)+Q  forg =eomm  (22)

where
~ dd (ot — S,_mls,m if o — gromxm’
_ (q q)A : | q | | o5
d’d*(q—l _ Q)SfmSm’ if q= e iromxm’
It can be shown that
AQ=q0A q = etvomxm (26)

which implies that a generalized number operatorcan be defined in such a way that
AN = (N + DA and Q = ¢,q ", wherec, is a proportionality constant whose value
depends on the choice dfandd’. Equation (26) implies thad?, A™” commute with all
elements of the algebra. Since the cagemnd ¢! give rise to identical results as far as
the algebra is concerned, we only examine the gasee 7™ ™ In order to determine
¢, We first make the choice

1 1 1

dd" = hence |d||d'| = (27)

g1—q  2isin(om x m)) 2| sin(yom x m/)|’
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The constant#, d’ are also undetermined up to a constant overall phase factor. Choosing
their magnitudes symmetrically we can determine the real positive shift cornstast

1
| sin(yorm x m/)|’
The first one in equations (25) leads to the same result in (28). From equations (25) we
have 0P = ch*DN. Then, making use of? = 1 and equations (12) and (13), we find
thatc, = gn(P-bmxm’/2 — 4=(D=1/2 |t can be seen that the net effect of the pure phase

¢, is to shift the spectrum af by an overall constaritD —1)/2. Hence,Q = g V-2,
With the generalized number operator as defined below equation (26), we have

C=dP+|d?= (28)

AAT — qATA =C(1l—gq)+ q_N_(D_l)/Z

AN = (N + 1A ATN = (N — DA,
Equations (29) describe thgoscillator algebra with its spectrum shifted by the positive
constantC as

(29)

gN+(D-D/2 _ (—R-(D-1/2

ATA =C +[N] where [N] = —

(30)
q9—4

where 0< ||ATA| as required, and’ is identified with the central invariant, which plays

a crucial role in the existence of the admissible cyclic representations af-tseillator

algebra endowed with a positive spectrum [18, 19]. In equations (29), the existence of the

lowest (highest) weight vectors such theing) = Af|ng+ D — 1) = 0 crucially depends on

the specific values oD andm x m/’. The condition for the existence of suply) is given

by C = —[ng]. For C as given by (28), it can be checked in equation (30) that this condition

is violated for D being an odd number. ID is an even number, such representations are

permitted form x m’ = D/2(modD), however, in that case they are not irreducible. For

D being a prime other than two, the situation is the same as wihés odd. We now

examine how they-oscillator algebra generators AT and N act in the eigenspace &,

operators. We first observe that|ihh — m/, r) is an eigenstate Sy With eigenvalue

A(m—-—mforO<r<D-1,

S |m — M, F) = A (m, m)|m — m/, r)

Smlm —m/,r) = g,(m,m))m —m/,r —m x m/) (31)

Spwlm —m/,r) = f,(m,m)m—m/,r —m x m/)
where the second and third equations can be deduced from equations (12). In the second
and third equationsg, (m, m’) and f,(m, m’) are pure phase factors to be determined.

Using equations (18) we compare the actiondoin the g-oscillator eigenbasis:) and in
the eigenbasigm, r) as

Am—m/,ry=dg+d f)lm—m/,r —m x m/)

Aln) =/C +[n]ln — 1)
where itis directly implied that a unit shift im corresponds to a shift @fin units ofm xm/'.
Sincem xm’ # (modD) by construction, the set of integergn xm’ forO<n < (D—-1)
is the same as itself in the same range. Then, all eigenvectors ingkascillator and the
Schwinger bases are connected on a one-to-one basis with successive operaticarsiof
A'. Since the eigenbasi$m, r)}o<r<(p—1) IS Normalized, equations (32) imply that

(dg +d' P)I? = C +[n]. (33)

(32)
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We then apply equations (27) and (28) to obtain
lgl* + 1P —igf*—g*f) _ 114 sinfo@ + (D = D/2)m x m|

34

2| sin(ygm x m/)| | sinf[ygm x m/)| (34)
Since|g| = | f| = 1, equation (34) yields

gr(m,m) = f7(m,m/) = g7 HPD2Amam (35)

where it can be considered that= nm x m’. Comparingi,(m) in equations (15) with
the first equation in (31) we find that.(m, m/) = e»—L/2m=m’  Equations (31)—(35)
indicate that the admissible cyclic representations ofgtfwescillator realization for a fixed
value of the deformation parametges 1 have one-to-one correspondence with the diagonal
representations of the Schwinger basis for fixed but arbitrary non-collinear veatons'.

To the author’s knowledge, the admissilgleoscillator subalgebraic realizations of the
Schwinger basis (or the magnetic translation basis) has not been studied befosa,, (Phe
realizations of two shifted and mutually commutiggpscillators in the Schwinger boson
representation has recently been studied by Fujikawa [20]. It will be demonstrated in
section 5 that this particular realization plays a crucial role in the canonical formulation of
the quantum phase problem.

3.3. Equivalence classes and canonical transformations on the lattice

In both theg-oscillator and thex,.2(sl(2)) realizations examined here, there are sets of
equivalence classds,, <.,y incorporating those sets of subalgebras parametrized by different
lattice vector pairsn andm’ such that the deformation parameter remains invariant under
unitary transformations within each such class.

Let us assume a transformatia®y,, ,,,.,.,- ., Of which the effective action is to map
the pairm, m’ into a new onem*, m” in Zp x Zp as

Rm,m’;m*,m*/f(m’ m/) = f(m*, m*/) (36)

such thatm x m’ = m* x m*, hencem, m’; m*, m* € E,.... Here f represents
an arbitrary function. IfRf; R is represented in equation (36) by thex2 integer
matrix R, then theR matrix satisfies

R'PR=P where P = 0 1 (37)
-1 0

with detR = +1. Here R’ corresponds to the ordinary transposef Equation (37)

implies that bothm andm’ are to be transformed by the same transformation

Rf(m,m) = f(Rm, Rm/) = f(m*, m") (38)

and besides the unimodularity & there is no further restriction. Hencg,is an element
of s1(2, Zp). The productm x m' corresponds to the exact cocycle [8] in the Schwinger
operator basis which is proportional to the discrete phase space area spanned by the vectors
m, m/. Hence,R plays the role of a class of area-preserving canonical transformations.
As a result of the projective character of the Schwinger basis, any unitary transformation
acting on the basis elements preserves the phase space area hence the symplectic structure as
described by the matri® in equation (37). The action @t on the lattice is then equivalent
to the reflection of such unitary transformations in the operator space.

At this point, we find it necessary to mention briefly that there are implications of the
equivalence classes in the construction of the generalized copradi¥otfor two deformed
subalgebras parametrized by different lattice vectors. Let us denotﬁlbﬂ, H, and
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X,, X1, H, as the generators in two such algebras from the same equivalence class. It is
possible to write for their tensor product algebra a generalized coproduct as

AX®) = X1 @ pl2 4 pH2g X,
AKR®) = Rl @ phi 4 p 2 g R (39)
AH®) =B Q1 +1® H,

where A(X®), A(X1®), A(H®) respect the same deformed algebra.
Keeping their labels on the lattice explicit, we now consider all operatqrs, Aim,

ands$,,_,» on the translated lattice bysuch thain = m+7r andn’ = m’+r. The algebra
on this translated lattice space is given by

~ ~ AL

A _ e A /\T _ 1 t
Am+r,m’+rSmfm’ =p Smfm’Am+r,m’+r Am+r,m/+rsmfm’ =p Smfm’Am+r,m/+r

A

Sy = s,,rp'J3 p' = pdrde Sa =71 x (m—m).
(40)

Here, p is given in equation (19). The equations (40) define the elememsﬁmf(sl(Z))

with a different deformation parametef. It is clear that translations on the lattice are not

in the class of area-preserving transformations defined above, and they cannot be realized
by any unitary transformation on the Schwinger basis. Such transformations act as a bridge
between the two projective representations characterized by two different cocycles. In
our formalism here, this effectively corresponds to transforming the elements of those
subalgebras belonging to one equivalence class,,, into those of the other ong,, ..., .

In the example of equations (40), these two subalgebras aegs/(2)) and U, (s1(2)

with deformationsp and p’ = pe® respectively.

We now shift our attention to a more general structure of linear canonical transformations
implicitly generated byR on the lattice. The similarity tranformation induced by the Fourier
operator]:" in equations (9)—(11) has been shown in section 2 to effectively generate the
simplest example of canonical transformations, i.e,/a rotation onZp x Zp. Let us now
seek general canonical transformations on the lattice generated by an oﬁemm that

G8mGt = Skom = Sow where R = (ii 2) e sl(2,Zp) (41)

with s x t = detR = 1, wheres = (sq1, s2) andt = (11, 1) are two vectors oZp x Zp.
Such a transformatiog can be given more explicitly in th&, V basis by
G0¢1=3,  ¢vat=§
U5 8,558, st —s - (42)
G s G 4
V—8t—>Systtt—> .
Using equations (42) and the results in section 2, the action of thperator on the basis
vectors{|u)iock<p—1) and{|v)}o<k<(p-1) can be found to be

Gloje =1s,k)  Gluh = |t, —k) (43)
where, similarly to the first one of equations (319, k) and|t, —k) are the eigenvectors of

S, and §; with eigenvalue indices and —k respectively. Hencé€ converts the vectors in
the eigenbasis @f andV into those inS; andS; respectively. The similarity transformation
in equations (9)—(11) is a special case of the transformation in (41) and (420, 1)

andt = (-1, 0).
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4. Applications to the Wigner—Kirkwood basis and the generalized Wigner function

We now consider the discrete Wigner—Kirkwood operator basis [13A1%]) acting on the
guantum phase space spanned by the vedfoss (Vi, V,). Phase space representations in
the Wigner—Kirkwood and the Schwinger bases are connected by the dual form

A 1 . . A . A
AWV) = —; > ermVg Sm = / dverm™VAW) (44)

wherem x V = m,V, — m,V; and the range of the integral ov®f is the entire 2-torus.
Similar constructions in the discrete formalism have also been made, for instance in [8, 13].
The Wigner functionWy, (V') is defined as the projection &(V') in a physical statey)

as

Wy (V) = (y|A(V)|¥). (45)

Any operatorﬁ(d, V) with |F|| < oo can then be associated with a classical function
f(V)as

1 A A n
o WIF) = /dV FVIWy (V) f(V) =TH{FAT(V)) dV =dVidV,. (46)

Hereupon, the particular normalization we will use is basegfo%ifndx e =278, and in
the continuous limit limy_, ., 2" € = 275 (x).

Let us now consider the action ¢f in section 2. The action of the Fourier operator
F on the Wigner—Kirkwood basis can be found using equation (44) td heV)F1 =
AR, V), whereR , : V = (V, —V1) With R,/ as given in equation (11). This is one
of the simplest non-trivial canonical transformations corresponding to the rotation of the
vectorV' by z/2 on the quantum phase space. As an extension of the finite transformations
generated by the operatdt, one can find in equation (41) explicit unitary transformations
generated b;é of which the reflections on the quantum phase space are linear canonical
ones on the quantum phase space observables.

The properties of a generalized phase space Wigner function have been enlisted by
Hillery et al [21] under several fundamental conditions. Most of these conditions can be
checked by employing the appropriate canonical transformatioasd the corresponding
R. In the following we will check these conditions for equation (44) using the properties
of the Schwinger basis.

(i) The Wigner function is realW, (V) = Wy (V).

Using the first equation in (12) it can easily be proven thal) is a self-adjoint
operator. HenceW, (V) is real.

(ii) Integration over one phase space variable yields the marginal probability
distribution of the physical state in the eigenbasis of the other varigbl¢ dV; W, (V) =
|(Vj|1p)|2 where|V;) = |v)y, for (i =1, j =2) and|V}) = |u)y, for (i =2, j = 1).

To prove this property using equation (44), perform the integral dvéo obtainDé,, o.

Then expressS,, - 8,0 in the i1, V basis where only the:;th power ofi/ or V appears.

Write 2/ or V raised to the power; in terms of its eigenbasis using equations (1)—(3) or
(4), (5). Following them; (i # j) summation, perform the summation over the eigenvector
index k to obtain the proof. Note that this condition is true for any canonically transformed
V = (V1, V») such thatV; — (R : V);, V; = (R : V);, which can be easily done usirﬁg
and R in equation (41).

(iii) Wy (V) should be covariant under Galilean translations on the phase space.
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Since the phase space spanned by the ventoisdiscrete, the translations are generated
by the integer powers @f andV operators asl”1|u)k = |U)kny andV”2|v)k = |U)ktn,- IN

the Galilean translated physical staf€) = (W)W) the Wigner function is given by

y 7n unl
wu(v0:=<ww< ) ( )(VM)|w> (47)

where the upper and lower cases correspond to the translations performed independently in
either thelu); or the|v), basis. Using the properties of tieandV operators as well as
equations (12) it can be shown that

(48)

V V
Wy, (V) = Wy (V) where V' = < 1+ n, 2)

Vi, Vo+nz/)

Hence, equation (44) is covariant under Galilean translations on the lattice.
(iv) W, (V) should be covariant under space and/or time inversions.
To prove this, we assume that the time inversion is definedrhymz)g(ml, —my)

and the space inversion is given l()ml,mz)—P>(—m1, —my). The time inversion is a
detT* = —1 type improper canonical transformation. Following a similar derivation in the
time inverted, i.e]y’) = T*|y), or space inverted, i.¢y’) = Ply), physical statgy’), it

is possible to see that

Wiy (V) = Wy (V') V' = (V1, —Va)

W, (V) = Wy (V") V' = (=V1, Vo).
In particular we notice that the transformation corresponding to space inversion is identical
to the successive operations of the Fourier operator in equation (11) twice, nanely;?.

(v) If Wy (V) and W, (V) are two Wigner functions corresponding to the physical
states|yy) and|y’) respectively, then

(49)

1
/dVWw(V)Wwf(V) = BIWIW)IZ. (50)
We present the proof starting from
de Ww(V)Ww (V) = D4 Z//dVe—'VO(m+m)XV(I/f|Sm|Iﬂ>(l/f |Sm’|1/f ) (51)
We then expresg)) and|y’), for instance in the|u)}o<k<(p—1) basis as
Yy = Welue 1Y) =) Yilud. (52)
k k

The V integral yields D%, _,,. Then, usingS,,|u);, = e r/2&+momz,y,  and
performing the summations over;, m, we obtain the right-hand side of equation (50).
(vi) If Y and Z are two dynamical operators of andV, then

1 A
) TH{YZ)} = [dV y(W)z(V) (53)
where y(V)) andz(V') are classical functions on the phase space correspondifigatad
Z.

The proof of this condition can be done using equation (46) ansl,Jr= Dém, 0.

We thus suggest that the realizations of the generalized Wigner—Kirkwood basis in terms
of the elements of the Schwinger basis as expressed in equation (44) satisfies all fundamental
conditions to represent the Wigner function in a more generalized form.
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The connection between the unitary transformations in the Schwinger basis and
canonical area-preserving ones on the quantum phase space have been intensively studied
recently. We refer to [8] for a detailed analysis of this connection. The Wigner function on
Zp x Zp has been examined by Wooters [22] and applications to action-angle case and the
problems therein have been recently studied in detail by Bizzaro [23] and Vaccaro [24].

The discrete Wigner function we examined in this section is based on the particular
normalization adopted in equations (44), (i.e. th@1 factor in the first equation). Using a
different normalization, it is also possible to examine the case in which one of the two (or
both) continuous phase space varialiés= (V1, V) is (are) replaced by the discrete ones.

The former is more convenient in the case in which the canonical variables correspond to the
action-angle pair, whereas the latter should be used when the discrete phase space variables
are considered on equal footing (i.e. canonical linear discrete coordinate and momentum
[13]). It should be noted that in sections 5 and 6 we will use the normalization adopted
for the action-angle variables and replace thi®32 factor in equations (44) by/12z D) in

order to obtain the conventional action-angle Wigner function in the continuous limit.

5. Applications to the unitary number-phase basis and connection to the quantum
phase problem
It is known that a finite-dimensional admissible cyclic algebra
aln) = f(n)*?In — 1) n#0
a'ln) = f(n+DY?n + 1) n#(D-1)
al0) = f(0)?8|D — 1) I8l =1;1D) = |0) (54)
a'|lD —1) = f(D)"?B*|0)
0< f(n) neZ (modD)

provides a well-defined algebraic basis for the quantum phase operator [19, 20}z &twie
a' are spectrum lowering and raising operators gital) is a generalized spectrum with the
cyclic property thatf (n + D) = f(n). The admissibility condition is enforced by the last
equation in (54).

The unitary phase operaté;; is given in the generalized cyclic number basis by [19, 20]

D-1
£y=> " In—1)n] In+ D) =|n) foralln (55)
n=0
where the discrete phase eigenvalues and eigenstates are
£ — gnt =) &y = 56
sl9)e 9 19k = ; ) 1P)esn =1d)e  (56)
with 0 < ¢ < D — 1. The phase eigenbasis is orthonormal and resolves the identity as
D-1
viglg)e=8ve  and  T=p) (@l (57)
=0

We now define the unitary operaté, = e with N describing the number operator
such thatV |n) = n|n). Then,Ey = eV has

o

-1

Enle)e = |p)e Eyln) = €77 |n) where |n) = e " g),. (58)

sl=
T
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The properties of the unitary phase and number operaﬁpmnd &y have been recently
studied from this algebraic point of view [19]. Here, in addition to these properties, they also
establish a particular application of Schwinger's operator basis. Among the four equivalent
choices in equations (10), we examine the particular case

ay  (éx
()= () 9

Using this, and following (8), we construct the operaté,r,s in the number-phase basis as
S = e ommz/28m gz where EiEy? = drommgragn, (60)

All properties of the cyclic Schwinger unitary operator basis studied in sections 2 and 3
are satisfied in the unitary number-phase basis. In addition to these properties, a strong
limitation exists on the admissibility of the representationg4ip to make the mapping in
(59) an acceptable one.

The g-oscillator algebra in section 3.1 defined by the elementd’, and N for a fixed
m and m’ with ¢ = et"™* ™ andy, = 27/D is an admissible cyclic algebra which
provides a natural realization of equations (54) with— A, at — Af, andN. In this
case, the admissible algebra in equations (54) is given by the shitadillator algebra in
equations (29) where

qn+(D—1)/2 _ q—n—(D—l)/Z 1

f) = [n]+C = 7—q1 +C ~ | sin(yom x m)]

£0. (61)

Now, let us consider a real cyclic operatEr(IQ) with 0 < |F(N)| such thatF(N) =
F (N + D) of which the eigenvalues in the number basis }o<,<p—1) are given byf (n).
We consider the expansion &f(N) as

1= . ,
Fy =53 fig™  q=etrmm, (62)
k=0

The sets of integergk m x m/;m x m’ # (modD)}ock<p—1) and {k}o<k<(p-1) are
equivalent for anym, m/. Thus, equations (62) is nothing but the operator Fourier
expansion of F(N). Using equation (25), and the fact that and m’ are not to be
collinear, the operatoy=" can be realized as the third elemel;;tlﬁ_m/ﬁm of the ¢-
oscillator subalgebra. Hence, equation (62) can be equivalently written as

. 1 D-1 R B . . D-1

Fi =+ ZO FeStm-my  fi = TS}y FD} = ZO & £ (n) (63)

k= n=|
where we redefined as fi — fic;'q¥? = fiqP/?. Since the vectorsn, m’ are fixed
but undetermined, equation (63) is the expansionFoN) in an arbitrary but fixed;-
oscillator subalgebra based on a fixedandm' of the Schwinger basis with the deformation
parametey = e '7omxm’,

As a specific application of section 4, and making use of the correspondence in (59),
we construct the Schwinger realization of the discrete Wigner—Kirkwood operator basis in
the number-phase space as

1

AUL0) = 27D

Z ei(yomllfmzé))efi%yomlmzéxléyz (64)
m

where we used the particulay @z D) normalization to examine the action-angle Wigner
function andJ, 6 are introduced as the generalizadtion-angle variablesas a physical
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realization of the phase space veciér— (6/yo, I) in equations (44). The change in the
normalization factor from equation (44) to equation (64) is then simply the Jacobian of the
transformation & — dI d9. The Wigner—Kirkwood basia (J, 6) has the cyclic property
that A(J, #) = A(J(modD), 6(mod2r)). Let us now insert the identity operator in (57) on
both sides of the basis operators in (64). Using equations (56) and (58) repeateaihd

m1 times, equation (64) becomes

(yom1J —m20) ‘m mimy/2
A, 0) = —an Zzé yoma S —mal) lrotmagromin/2|g) L (). (65)
The action-angle Wigner function in any particular finite-dimensional Hilbert space state
|[y) is then given as in (45) by

Wy (J,0) = (VAW O)|Y) (66)

with all required conditions for the generalized Wigner function satisfied. In section 6.3 we
will examine the continuous limit of equation (66) &s— oo.

6. The limit to continuum

The largeD limit of the sine algebra has been extensively studied initially, for instance in
[5, 6], and later by many other workers. We will not present these results here. We will
consider theD — oo limit with the condition thatD remains a prime number.

6.1. The number-phase basis

In the limit D — oo the spectra of/ and V become arbitrarily dense and approach a
continuously uniform distribution on the unit circle. Hence, for both unitary operators, the
strong convergence is clearly guaranteed from those with discrete spectra to those with
continuous spectra [25, 26]. In particular, the continuous limits€pfand £y will be
identified as

o 2
lim &t — 5 N where y = I|m TR
D—o0 D—oo D

A (67)
Dlinocc‘f =&, 0<my<o0, mpelZ

whereéy and£’¢ are now corresponding unitary operators with continuous spectra. On the

other hand, in the limit to continuity we must restrict the physical stateséthand €y act
upon to those everywhere differentiable and continuous functions in the infinite-dimensional
Hilbert space. For all such acceptable stdtes the condition for weak convergence

A Y
Dlim [(EN — <€]\,)|1p)||2 <e€ where e < O (arbitrarily small)  (68)

and similarly f0r5¢, must be respected. In particular, it was shown in [25] that the

eigenstates of y and 5¢ are good examples of sudly) and the convergence in (68) in
the limit D — o is known to eX|st Considering thB — oo limit of equations (56) and
(58), the eigenstates Q‘IIN and£¢, are

D—

_ _(pfi(f)n ¢n 69
_f@e B 1) = X:; In) (69)
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where we have defined

lim |n) = |n) 0O<n<oo
D—o0

lim i|q> = |¢) ¢ = lim @ eRand 0< ¢ < 2r (70)

D—o0 \/_ D—oo D

with the proper normalizationgp’|¢) = 8(¢ — ¢’) and (n'|n) = 8,,,. Remember that

the periodic boundary conditions are still valid in the limit (ij¢) = |¢ + 27) and

In) = limp_o|n + D)). For a generally acceptable stag) = Y 2" y|¢), with

ll¥) ] = 1, a similar weak convergence condition as in (68) stated for the phase operator
requires

D-1
Jim G = EQI? = Jlim sz(ém )’ <e. (71)
Since|y,| < 1, and the convergence
Jim |(é¢—5¢>|w>n2=gim supl|(€™" —€”)?:0< < (D-D} <e (72)

is guaranteed because of equations (69) and (70), the only condition for the existence for
such acceptable states is that in the limit— oo, the wavefunctiony, is sufficiently
well behaved and everywhere differentiable. Once the weak convergence condition in
equation (68) is satisfied for an acceptable stdte expressed in one basis (i.e. |im) or
|¢)), the weak convergence in the other basis is guaranteed by equations (69).

The actions of the operators in (67) on the infinite-dimensional Hilbert space spanned
by the vectors in (69) are therefore

~

Edy =16 —v)  Exln) =€)

al Al ) (73)
Egln) =In— ) Eyld) = €“|g).
In this continuous limit, equation (60) implies that
Lol 4 oA
e"NE, =g eV, (74)
Differentiating (74) with respect tp and considering the limiy — 0 we find that
A ot At
[N, &yl =&, (75)

which is the Susskind—Glogower—Carruthers—Nieto phase-number commutation relation [27]
with &, describing the unitary phase operator with a continuous spectrum as given in (73).
The expansion of equation (74) for all ordersjinis consistent with the first-order term
described in equation (75). The coeff|C|ent of th¢yO term reproduces theth-order

commutation relations between and5¢ In this respect, equation (74) or, more generally,
its discrete version in equation (6) should be treated as generalized canonical commutation
relations.

6.2. The spectrum shiftegoscillator

To study theD — oo limit of the g-oscillator we first consider, in the numerator af| [
in (61), the equivalence of the sets of integpram x m/; m x m/(modD)}o<,<(p—1) and
{n}o<n<(p—1) for anym, m’. If m xm/ # 1, this equivalence amounts to folding the value
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of nm x m/ into the firstBrillouin zonen for 0 < n < (D —1). In the limit, the spectrum
is given by
: 1+ sin
f) = lim S0
D—oo | SIN(ypm X ™M)|
Depending onm x m/, the sine term in the numerator takes continuous values in the range

[0,1) for 0 < n < (D —1). Two limiting cases can be identified depending on the basis
vectorsm, m’ by

(76)

Dlim [1/v0 £ n] ifmxm/ =1
fay=4""% . , (77)
Dlinoo[l =+ yon] if mxm' =(D-1)/4€eZ.

The first case is identical to the continuous limit considered by Fujikawa [18]. The spectrum
is linear and unbounded, and the admissibility condition implies an unbounded positive
shift by limp_. . 1/v0. This is somewhat an infinitely shifted harmonic oscillator spectrum.
Whereas, in the second case in (77), one obtains a continuous, finite, and linear spectrum.
The limit D — oo has other interesting features. Fujikawa has shown that the vanishing of
the index [28]

D-1
I = Z{e—f(n) — g /0ty (78)
n=0

is a stringent condition for the existence of the unitary phase operator. Using this index
condition for the general admissible algebra in (54), it was previously shown [19, 28] that
the limit D — oo has a singular behaviour in the spectrumlat= oco. This typical
transition to a singular behaviour is also visible here if we compare the two indexes in
(78) once calculated using equation (76) and then (77). The former correctly yietd3,
whereas for the lattef # 0. Hence, in transition from (76) to (77), the vanishing index
condition is violated. This proves that the spectrum as expressed in (77) is not admissible
at the limit D = oo. The admissible form of (77) is given by

lim 1/y0[1 = sin(yon)] if mxm/ =1
fay=4°2"% | , (79)

Dlinoo[l =+ sin(yon)] if mxm' =(D—-1)/4eZ
so that the vanishing index condition is respected. Thus, we learn that the vanishing index
requires the information on the cyclic properties of the algebra to be maintained fbr all
including the transition to infinity. For a more general consideration of the index theorem,
we refer to [28]. Before closing this section, we remark that the second limiting case in (79)
is somewhat similar to tight binding energy spectra in certain condensed matter systems.

6.3. The Wigner function in the phase eigenbasis

Let us define in (64) the variables= limp_, o ¢¢, ¢ +y = lIMp_ oo Prim, With ¢,y € R
as well asl¢) = limp_ y0_1/2|¢>)5 in accordance with equations (67) and (70). Sipce
are continuous, we can replace the summation awgrin the limit, by an integral ovey
such that limy_.1/D) ", — liMp_ Z,’;,);:lofdy/Zn. Combining everything, we find
for the Wigner function in this limit

dv
Wy (J,8) = / LT Y10~ y/2)(0 + v/200) (80)

which is the conventional action-angle Wigner function represented in the continuous phase
basis. Recently, a similar construction of the continuous Wigner function based on the
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continuous WH basis was suggested in [13] as well as in [29] in very close correspondence
with the results obtained here. Equation (80) can be realized as the action-angle analogue
of [29]. If one starts in the generalized dual form represented by equation (44) with the
symmetric normalization, the discrete WH representation () is obtained which leads

in the continuous limit to Wolf's Wigner function formulation in [29]. The continuous WH
representation as the standard representation of the Wigner function has also been examined
by Schwinger [4] as well as in [8].

6.4. The continuously shifted finite-dimensional Fock spaces and the Wigner function in the
generalized Fock representation

Let us consider the cyclic algebra in (54) with the unitary phase and number operators as
defined in equations (56) and (58). We consider the phase opé?gftdn Hp as

gy =e ),  and  £,%n)=In+a) (81)
wherea € R[0, 1) and |n + «) is defined by

In+a) = 75 > ettty (82)
=0

Sincea € R0, 1), the stateg|n +«)},<,<p—1) d0 not belong to the set of vectors spanning
the finite-dimensional conventional Fock spa€g. We now define a continuously shifted
finite-dimensional Fock spacgy’ where{|n+a)oc,<(p-1; @ € R; [n+a+D) = [n+a)} €
]-"g”. It can be readily verified that the following relations are satisfied by equation (82)
for all continuous values a#:

D-1

(n+aln’ +a) =8y Z|n+a)(n+a| =1 (83)
n=0

This implies that for a fixedr € R, the shifted Fock spac&’ is also spanned by a
complete orthonormal set of vectofi® + o) }o<,<(p—1) and it can equivalently be used in
the generalized Fock representation of a physical state. The overlap befyeand ng>
clearly respects the conditiofn|n + «)| < 1 for all « € R, and the extreme limits of
o — 0 andD — oo are commutative and well behaved:

|sinral|/(Ta) if D—> o0, 0<a<1

5 . (84)
1— (1—1/D)(ra)?/3! if D<oo, a@— 0.

l(nln 4+ a)| =

Since Fp and ]—‘L(;” are spanned by cyclic vectors, = 1 andae = 0 correspond to the

identical Fock space representations. The action of the opeé(éton the vectors irﬂ-"g”
is, therefore, equivalent to a continuous shift of the origirFifh by g € R such that

& Fy - FyP (85)

Hence, a continuous shift induced by the operatcﬁ’f is effectively equivalent to carrying

vectors from the Fock spac&’’ into the other oneF\y ', and the limitg — 0 is
continuous and analytic. Therefore, equation (85) decribes an isomorphism between two
inequivalent Fock spaces with equal dimensions. The physical implication of thecstéte

that it corresponds to theacuum statén F5’ and, unless = 0, it is not the conventional
vacuum|0). The Fock space of thg-oscillator in equation (29) is a typical example in

which such a vacuum state is observed where we specifically Agve”’>. For D being
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an odd integer, the conventional Fock representationgjnare obtained. FoD being
an even integer, the Fock space of th®scillator is]-"ll)/2 and the vacuum state l%)

correponding tax = % One crucial application of this is to examine the projection of the

Wigner—Kirkwood basis onto the shifted Fock spa‘e‘g‘). Let us now insert the identity
operator in (83) on both sides of the unitary number-phase basis operators in (64) yielding

N 1 . )
A(J,0) = 5D Z g (vom1J —m20) g=iyomims/2

D—-1 D-1
X{Z|n+a)(n+a|}éﬁlégz{Z|n'+a)(n’+a|}. (86)
n=0 n'=0
So far, the continuous shifi was arbitrary. Now, we adopt a particular set of values of
a for eachJ independently in such a way that”2— «) € Z. Since equations (83) are
valid for all « € R, this adaptive choice fox does not spoil the properties of the Wigner
function studied in section 5. Now, considering the limit— oo and following a similar
calculation leading to (80), we obtain the Wigner function

1 . D-1 )
Wy (],0) = o lim 5 e (Y] —ma/2)(J +ma/2) (87)
mo=0

which is expressed in the shifted Fock bases in the liit> oco. For the choice ofx
as 2J — a) € Z, we have for the basis vectofs/ + m»/2); my = odd} € J—'l(fi%) and
(1] £m2/2); my = even) € F. Note that because of the cyclic property of the vectors
in Hp, the shifted Fock spac&,™ /% shares the same vectors wifif, /% for all D < oo
anda € R[O, 1). Thus,j’-‘j‘ﬁl/2 and f*g_l/z are indeed the same shifted Fock space. This
discussion implies that if in the summation in (87), the even and odd values, afre
separated, the Wigner function becomes a sum of two contribufiBffé™ and w99

projected ontaFy, and}‘g”/ ? for even and oda, respectively as
Wy (J,8) = W (J,6) + W, ). (88)

Since each contribution is based on a differéntlimensional shifted Fock basis, they are
properly normalized. It is interesting to note that a similar decomposition of the Wigner
function in the Fock representation has been recently proposed & dnk P&nova [30]

as well as by Vaccaro [24] in order to avoid certain superficial anomalies of the Wigner
function they use in mixed physical states. Using continuously shifted Fock spaces, the
decomposition they propose follows naturally. To elaborate more on the resolution of the
anomalous behaviour of the Wigner function using the shifted Fock spaces exceeds our
purpose here. It can be shown that the concept of continuously shifted Fock basis can also
be generalized to the continuously shifted discrete Schwinger basis vEatqisand{|v);}.

This subtle point certainly deserves much more attention in the generalized formulation of
the Wigner function and quantum canonical transformations, which we intend to present in
a forthcoming work.

7. Conclusions

The central theme of this work was to demonstrate that conceptual foundation of the quantum
phase lies in the algebraic properties of the canonical transformations on the generalized
guantum phase space. In this context:
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(1) Itis shown that the Schwinger operator basis provides subalgebraic realizations of the
admissibleg-oscillators in addition to the known deformed(2) symmetries labelled by the
lattice vectors inZp x Zp. The intensively studied magnetic translation operator algebra
is a specific physical realization of Schwinger's operator algebra. In this context, some
interesting physics might be found in the realization of the shiftexcillator subalgebra in
terms of the magnetic translation operators as applied to the Bloch electron problem. To the
author’'s knowledge, the nearest approach to this idea has recently been made by Fujikawa
et al (see the second reference in (18)).

(2) Certain equivalence classes within each subalgebra, using different lattice labels,
are identified in terms of area-preserving transformations. A general formulation of such
discrete, linear canonical transformations is presented.

(3) The dual form between the Schwinger operator basis and the generalized discrete
Wigner—Kirkwood basis is examined and the connection to the general area-preserving
canonical transformations dhp x Zp is briefly studied.

(4) The application of the Schwinger operator basis on the number-phase basis is
discussed and shown that it provides an algebraic approach to the formulation of the quantum
phase problem. The admissibly shiftgebscillator realizations of the Schwinger basis are
studied from this algebraic point of view. In this context, the algebraic canonical phase space
formulation of quantum phase appears to be a unique example in which natural applications
of a quantum algebra in the resolution of a physical problem is explicitly found. The
generalized Wigner—Kirkwood basis is examined in the unitary number-phase basis and the
limit to the conventional formulation of the action-angle Wigner function is investigated as
the size of the lattice tends to infinity, or reciprocally, as the lattice spacin@2ends to
zero.

(5) Finally, much work has to be done on understanding the quantum phase problem
within the canonical quantum phase space formalism. This problem is also evidently
connected to the recent research areas such as classical and quantum integrability, the
deformation quantization, theory of nonlinear quantum canonical transformations and the
Lie algebraic representations of the Wigner function.
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